airflow with mysql docker compose
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
version: '3'
x-airflow-common:
&airflow-common
# In order to add custom dependencies or upgrade provider packages you can use your extended image.
# Comment the image line, place your Dockerfile in the directory where you placed the docker-compose.yaml
# and uncomment the "build" line below, Then run `docker-compose build` to build the images.
# image: ${AIRFLOW_IMAGE_NAME:-apache/airflow:2.3.3}
build:
context: .
dockerfile: airflow-docker
# build: .
environment:
&airflow-common-env
AIRFLOW__CORE__EXECUTOR: CeleryExecutor
AIRFLOW__DATABASE__SQL_ALCHEMY_CONN: mysql+pymysql://root:${DATABASE_PASSWORD}@mysql/airflow
# For backward compatibility, with Airflow <2.3
AIRFLOW__CORE__SQL_ALCHEMY_CONN: mysql+pymysql://root:${DATABASE_PASSWORD}@mysql/airflow
AIRFLOW__CELERY__RESULT_BACKEND: db+mysql+mysqlconnector://root:${DATABASE_PASSWORD}@mysql/airflow
AIRFLOW__CELERY__BROKER_URL: redis://:@redis:6379/0
AIRFLOW__CORE__FERNET_KEY: ''
AIRFLOW__CORE__DAGS_ARE_PAUSED_AT_CREATION: 'true'
AIRFLOW__CORE__LOAD_EXAMPLES: 'false'
AIRFLOW__API__AUTH_BACKENDS: 'airflow.api.auth.backend.basic_auth'
_PIP_ADDITIONAL_REQUIREMENTS: ${_PIP_ADDITIONAL_REQUIREMENTS:-}
AIRFLOW_MYSQL_ALCHEMY: mysql://${DATABASE_USER}:${DATABASE_PASSWORD}@${DATABASE_HOST}:${DATABASE_PORT}/${WAREHOUSE_DB}?charset=utf8
volumes:
- ./airflow/dags:/opt/airflow/dags
- ./airflow/logs:/opt/airflow/logs
- ./airflow/plugins:/opt/airflow/plugins
user: "${AIRFLOW_UID:-50000}:0"
depends_on:
&airflow-common-depends-on
redis:
condition: service_healthy
mysql:
condition: service_healthy
services:
mmacast:
build:
context: .
ports:
- "8000:8000"
volumes:
- ./app:/app
stdin_open: true
tty: true
# command: >
# sh -c "uvicorn main:app --host 0.0.0.0 --prot 8000"
env_file:
- ".env"
environment:
- DEBUG=1
- TZ=Asia/Seoul
mysql:
image: mysql:8
restart: always
volumes:
- mysql-db-data:/var/lib/mysql
- ./mysql_init/:/docker-entrypoint-initdb.d/
command: mysqld --character-set-server=utf8 --collation-server=utf8_general_ci
environment:
- MYSQL_DATABASE=${DATABASE_NAME}
- MYSQL_ROOT_PASSWORD=${DATABASE_PASSWORD}
- MYSQL_PASSWORD=${DATABASE_PASSWORD}
- TZ=Asia/Seoul
ports:
- "3306:3306"
healthcheck:
test: ["CMD", "mysqladmin", "ping", "-h", "localhost"]
interval: 5s
timeout: 30s
retries: 10
redis:
image: redis:latest
expose:
- 6379
healthcheck:
test: ["CMD", "redis-cli", "ping"]
interval: 5s
timeout: 30s
retries: 50
restart: always
airflow-webserver:
<<: *airflow-common
command: webserver
ports:
- 8080:8080
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:8080/health"]
interval: 21600s
timeout: 20s
retries: 3
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-scheduler:
<<: *airflow-common
command: scheduler
healthcheck:
test: ["CMD-SHELL", 'airflow jobs check --job-type SchedulerJob --hostname "$${HOSTNAME}"']
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-worker:
<<: *airflow-common
command: celery worker
healthcheck:
test:
- "CMD-SHELL"
- 'celery --app airflow.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}"'
interval: 10s
timeout: 10s
retries: 5
environment:
<<: *airflow-common-env
# Required to handle warm shutdown of the celery workers properly
# See https://airflow.apache.org/docs/docker-stack/entrypoint.html#signal-propagation
DUMB_INIT_SETSID: "0"
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-triggerer:
<<: *airflow-common
command: triggerer
healthcheck:
test: ["CMD-SHELL", 'airflow jobs check --job-type TriggererJob --hostname "$${HOSTNAME}"']
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-init:
<<: *airflow-common
entrypoint: /bin/bash
# yamllint disable rule:line-length
command:
- -c
- |
function ver() {
printf "%04d%04d%04d%04d" $${1//./ }
}
airflow_version=$$(AIRFLOW__LOGGING__LOGGING_LEVEL=INFO && gosu airflow airflow version)
airflow_version_comparable=$$(ver $${airflow_version})
min_airflow_version=2.2.0
min_airflow_version_comparable=$$(ver $${min_airflow_version})
if (( airflow_version_comparable < min_airflow_version_comparable )); then
echo
echo -e "\033[1;31mERROR!!!: Too old Airflow version $${airflow_version}!\e[0m"
echo "The minimum Airflow version supported: $${min_airflow_version}. Only use this or higher!"
echo
exit 1
fi
if [[ -z "${AIRFLOW_UID}" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: AIRFLOW_UID not set!\e[0m"
echo "If you are on Linux, you SHOULD follow the instructions below to set "
echo "AIRFLOW_UID environment variable, otherwise files will be owned by root."
echo "For other operating systems you can get rid of the warning with manually created .env file:"
echo " See: https://airflow.apache.org/docs/apache-airflow/stable/start/docker.html#setting-the-right-airflow-user"
echo
fi
one_meg=1048576
mem_available=$$(($$(getconf _PHYS_PAGES) * $$(getconf PAGE_SIZE) / one_meg))
cpus_available=$$(grep -cE 'cpu[0-9]+' /proc/stat)
disk_available=$$(df / | tail -1 | awk '{print $$4}')
warning_resources="false"
if (( mem_available < 4000 )) ; then
echo
echo -e "\033[1;33mWARNING!!!: Not enough memory available for Docker.\e[0m"
echo "At least 4GB of memory required. You have $$(numfmt --to iec $$((mem_available * one_meg)))"
echo
warning_resources="true"
fi
if (( cpus_available < 2 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough CPUS available for Docker.\e[0m"
echo "At least 2 CPUs recommended. You have $${cpus_available}"
echo
warning_resources="true"
fi
if (( disk_available < one_meg * 10 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough Disk space available for Docker.\e[0m"
echo "At least 10 GBs recommended. You have $$(numfmt --to iec $$((disk_available * 1024 )))"
echo
warning_resources="true"
fi
if [[ $${warning_resources} == "true" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: You have not enough resources to run Airflow (see above)!\e[0m"
echo "Please follow the instructions to increase amount of resources available:"
echo " https://airflow.apache.org/docs/apache-airflow/stable/start/docker.html#before-you-begin"
echo
fi
mkdir -p /airflow/logs /airflow/dags /airflow/plugins /airflow/dags/logging
chown -R "${AIRFLOW_UID}:0" /airflow/{logs,dags,plugins}
exec /entrypoint airflow version
# yamllint enable rule:line-length
environment:
<<: *airflow-common-env
_AIRFLOW_DB_UPGRADE: 'true'
_AIRFLOW_WWW_USER_CREATE: 'true'
_AIRFLOW_WWW_USER_USERNAME: ${_AIRFLOW_WWW_USER_USERNAME:-airflow}
_AIRFLOW_WWW_USER_PASSWORD: ${_AIRFLOW_WWW_USER_PASSWORD:-airflow}
_PIP_ADDITIONAL_REQUIREMENTS: ''
user: "0:0"
volumes:
- .:/sources
airflow-cli:
<<: *airflow-common
profiles:
- debug
environment:
<<: *airflow-common-env
CONNECTION_CHECK_MAX_COUNT: "0"
# Workaround for entrypoint issue. See: https://github.com/apache/airflow/issues/16252
command:
- bash
- -c
- airflow
# You can enable flower by adding "--profile flower" option e.g. docker-compose --profile flower up
# or by explicitly targeted on the command line e.g. docker-compose up flower.
# See: https://docs.docker.com/compose/profiles/
flower:
<<: *airflow-common
command: celery flower
profiles:
- flower
ports:
- 5555:5555
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:5555/"]
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
volumes:
mysql-db-data:
<<: *airflow-common
: 다른 YAML 파일에서 정의된airflow-common
이라는 설정을 가져와 현재 설정에 병합합니다.entrypoint: /bin/bash
: 컨테이너의 진입점(entrypoint)을/bin/bash
로 설정합니다.command
: 컨테이너가 실행될 때 실행되는 명령을 정의합니다. 이 부분은bash
쉘 스크립트로 작성되어 있습니다.ver()
함수는 버전을 비교하기 위한 함수입니다.airflow_version
변수에는 Airflow의 버전 정보가 저장됩니다.airflow_version_comparable
변수에는 버전 정보를 숫자로 변환한 값이 저장됩니다.min_airflow_version
변수에는 최소 지원 Airflow 버전이 저장됩니다.min_airflow_version_comparable
변수에는 최소 지원 버전을 숫자로 변환한 값이 저장됩니다.- Airflow 버전이 최소 버전보다 낮으면 에러 메시지를 출력하고 종료합니다.
AIRFLOW_UID
환경 변수가 설정되지 않은 경우 경고 메시지를 출력합니다.- 사용 가능한 메모리, CPU 및 디스크 공간이 일정 기준에 미달하는 경우에도 경고 메시지를 출력합니다.
/sources/logs
,/sources/dags
,/sources/plugins
디렉토리를 생성하고, 해당 디렉토리의 소유자를${AIRFLOW_UID}:0
로 변경합니다.- 마지막으로
/entrypoint airflow version
명령을 실행하여 Airflow 버전을 출력합니다.
environment
: 컨테이너 환경 변수를 설정합니다.airflow-common-env
에서 정의된 기본 환경 변수를 가져오고, 추가적인 환경 변수를 정의합니다. 여기서는 데이터베이스 업그레이드와 Airflow 웹 사용자 생성, 사용자 이름 및 비밀번호를 설정합니다. 추가적으로 PIP로 설치할 추가적인 요구 사항을 설정할 수도 있습니다.user: "0:0"
: 컨테이너 내에서 실행되는 프로세스의 사용자를 root로 설정합니다.volumes
: 호스트 파일 시스템과 컨테이너 간의 볼륨 마운트를 설정합니다. 현재 디렉토리(.
)를 컨테이너의/sources
디렉토리에 마운트하여 로그, DAG 파일 및 플러그인 파일을 공유합니다.
This post is licensed under CC BY 4.0 by the author.